next up previous
Next: About this document ...

Задача 7.


ПЗС-ФОТОМЕТРИЯ ГАЛАКТИКИ

Фотометрические наблюдения дают возможность получить такие важные характеристики объектов как распределение яркости и цвета. Яркость галактики в различных фотометрических диапазонах определяются общим количеством излучающей материи, а показатели цвета зависят от относительного вклада излучения соответствующего компонента в общую светимость.

Целью данной задачи является обработка снимков спиральной галактики, полученных с помощью ПЗС-камеры. Требуется получить профили яркости галактики в фильтрах B, V, R, I, построить карты распределения светимости и показателей цвета, определить, как меняется позиционный угол и эллиптичность изофот с увеличением расстояния от центра, определить интегральную светимость и показатели цвета галактики.

В задаче используются снимки галактики NGC 6217, полученные на 1.5-м телескопе Майданакской обсерватории (Узбекистан). В качестве приемника изображения применялась ПЗС- матрица TI 800x800. Масштаб изображения - 0.25"/пиксель. Для калибровки снимков галактики в ту же ночь был снят звездный стандарт. Удобные для работы стандарты приведены в работе Ландольта [1], представляющей собой список звезд, расположенных в экваториальной зоне, величины которых измерены фотоэлектрическими методами с хорошей точностью (несколько тысячных звездной величины). Также для обработки понадобятся "темновой кадр" (получается с закрытым в ту же ночь с той же экспозицией, что и объект), "байес" (bias, шум считывания, получается с нулевой экспозицией, как правило несколько раз за ночь), и "плоское поле" (получается при съемке равномерно освещенных поверхностей, позволяет учесть неоднородность чувствительности отдельных элементов ПЗС-матрицы). Заметим, что для облегчения выполнения задачи вам изначально даются уже усредненные изображения с байесом (т.н. superbias) и плоским полем (superflat).

В качестве инструмента для обработки астрономических снимков в настоящее время применяются несколько пакетов программного обеспечения, таких как PCVISTA (устаревшее п/о, на практике почти не используется), IRAF (широко распространен в Америке), MIDAS (распространен в Европе) и др.

В данной задаче обработка ведется с помощью MIDAS (Munich Image Data Analysis System), разработанного в Европейской Южной Обсерватории (ESO). Он представляет собой многоцелевой пакет, созданный специально для астрономических приложений. Он состоит из базовых модулей, и набора специализированных пакетов, облегчающих обработку спектров, астрометрических снимков, поверхностной фотометрии и многого другого.

Задача выполняется на ПК, работающем под Linux (операционная система, подобная unix), в графической оболочке X-windows. Краткий обзор собственных команд Linux, которые могут быть полезны в работе, а также команд пакета MIDAS, приведены в Приложении.


Для выполнения задачи необходимо иметь 17 файлов: 4 файла изображения галактики NGC 6217 в фильтрах B, V, R, I (gal180b.bdf, gal120v.bdf, dal120r.bdf, gal120i.bdf), 8 файлов площадок звездных стандартов Ландольта PG1657+078 (s40b1.bdf, s40b2.bdf, s20v1.bdf, s20v2.bdf, s20r1.bdf, s20r2.bdf, s20i1.bdf, s20i2.bdf) - по 2 в каждом фильтре, 4 файла "плоского поля" матрицы (flat) в фильтрах B, V, R, I и файл уровня сигнала смещения матрицы (bias).


Перед выполнением задачи обязательно ознакомьтесь с описанием простейших команд Linux и MIDAS, приведенных в Приложении.


Порядок выполнения работы


  1. Войти в Linux с паролем, сообщенным преподавателем. Командой startx запустить X-windows [это может быть сделано преподавателем заранее].

    Создать рабочую директорию, чтобы затем можно было продолжать в ней обработку [например, mkdir ivan_23022001].

    Файлы, необходимые для работы, содержаться в директории initial_data/15/

    Cкопировать 17 файлов в директорию, в которой будет выполняться работа, командой cp /initial_data/15/* /ваша_рабочая_директория

    В X-Windows открыть окно и запустить MIDAS командой inmidas -p 0x , где x - цифра от 0 до 9. Данная команда позволяет запускать одновременно несколько сессий MIDAS на одной и той же машине.

  2. Исправить изображение галактики и звезд сравнения за байес и плоское поле. Первоначально из всех изображений вычитается с помощью команды compute/pixel супербайес (файл sbias.bdf). Исправленные таким образом файлы изображений галактики и звездной площадки необходимо разделить на файлы изображений плоских полей (файлы sflatb.bdf, sflatv.bdf, sflatr.bdf, sflati.bdf) отдельно для каждого из четырех фильтров.

    Чтобы не перегружать задачу, здесь не рассматривается построения супербайеса и суперфлэта, однако, необходимо знать, что в нулевом приближении они строятся методом попиксельной фильтрации, и значение каждого пикселя супербайеса (суперфлэта) является медианным средним значений тех же пикселей всех байесов данной ночи наблюдений (флэтов этого сета наблюдений в данном фильтре).

  3. Вывести на экран дисплея изображения площадок звездных стандартов Ландольта (команда load/image), при необходимости выбрать удобную цветовую палитру командами tutorial/lut и load/lut). Отождествить объекты, используя карты звездных площадок из работы [1], приведенные в Приложении.

  4. Провести калибровку по звездам фотометрического стандарта. Для этого с помощью команды magnitude/circle определить интегральные интенсивности четырех звезд на каждом из восьми изображений. Обратите внимание на то, что размер апертуры, в которой производится аппроксимация гауссианой, задается в команде в явном виде и не зависит от размера кружка, изображенного на экране. Размер апертур выбрать таким образом, чтобы звезда полностью попадала в нее, но не слишком большим, чтобы флуктуации фона не оказывали заметного влияния на значения интенсивности.

    Определить для каждой звезды в каждом фильтре средний по двум изображениям поток, нормированный на время экспозиции галактики, по формуле:

    \begin{displaymath}
I_{star} = \frac{I_1 + I_2}{2} \cdot \frac{t_{gal}}{t_{star}}
\end{displaymath}

    где в нашем случае $t_{gal}$ = 180 сек - для фильтра B, 120 сек - для фильтров V, R, I; $t_{star}$ = 40 сек - для фильтра B, 20 сек - для фильтра V, 7 сек для R и 10 сек - для I.

    Примечание: Для выполнения этой операции удобно пользоваться редактором таблиц в MIDAS (команды create/table, create/column, edit/table, compute/table).

    Используя полученные значения потоков для звезд стандарта и их известные звездные величины, определить средние по всем звездам коэффициенты С в уравнениях $surface  brightness  =  -2.5  lg(I_{star})  +  C$ для каждого фильтра.

  5. Вывести на экран изображения галактики (с помощью loa/ima) и вычесть фон в каждом изображении. Для этого необходимо воспользоваться командой fit/flatsky с ключом CURSOR. Выбрать в каждом изображении несколько площадок, свободных от звезд и частей галактики. Менять размер окошка можно стрелками с клавиатуры. Допускается указывать произвольное количество площадок. Использую значения потока в них, программа автоматически аппроксимирует фон поверхностью-полиномом нужной степени и вычтет его из изображения.

  6. Совместить изображения галактик так, чтобы можно было правильно делить их при получении показателей цвета. Для этого выбирается несколько звезд, присутствующих на всех изображениях и видимых достаточно отчетливо. Команда center/gauss позволяет определить центры звезд, а также полуширины гауссиан, которыми эти звезды аппроксимировались. Команда также создает таблицу, в которой будут содержаться необходимые в дальнейшем данные. Сделайте таблицы для всех изображений галактики. Будьте внимательны, важно сохранить один и тот же порядок отмечаемых звезд для каждого изображения. Посмотреть содержимое таблицы можно командой edit/tab.

    В качестве базового изображения (reference frame) можно использовать любое из четырех изображений галактики.

    Используя команду align/image, определить коэффициенты перехода, необходимые для совмещения изображений галактики в разных фильтрах: угол поворота, смещение по x-координате, смещение по y-координате. Операция совмещения производится командой rebin/rotate с ключом KEYWORD непосредственно после выполнения align/image для пары изображений базовое + поворачиваемое (см. Приложение, обратите внимание на то, что для выполнения rebin/rotate с ключом KEYWORD не нужно вписывать координаты в явном виде).

  7. Используя найденные по стандартным звездам калибровочные константы, мы можем построить изофоты галактики для каждого фильтра, пересчитав их с помощью команды comp/image по формуле $surface  brightness  =  -2.5  lg I  +  C$. Примите во внимание то, что переводя интенсивность в звездную величину, вы получаете значения звездной величины каждого пикселя изображения. Для перевода в зв.вел./кв.сек. необходимо учесть то, что масштаб изображений 0.25 угл.сек/пиксель.

  8. Загрузить пакет SURFPHOT для дополнительных возможностей в обработке данных поверхностной фотометрии командой set/context surfphot С помощью команды find/posinc найти значения позиционного угла и эллиптичности изофот галактики с достаточно небольшим шагом по радиусу. Из выдаваемых на экран двух таблиц полезной является только первая, в которой приведены радиус кольца (колонка 1), эллиптичность изофот 1-b/a (колонка 2) и позиционный угол галактики (колонка 3). Занести данные в таблицу и расчитать с помощью команды compute/table наклон плоскости галактики.

    Примечание: Использовать при работе с командой find/posinc файлы изображений в интенсивностях, и только в одном фильтре, лучше в полосе I, т.к. в этом случае вклад от неравномерно распределенных областей звездообразования минимален.

    Вывести на графический экран зависимости позиционного угла и наклона плоскости от расстояния до центра галактики (команды plot/table, set/graphics), и перевести их в postscript-файлы командой copy/graphics. Удобный формат осей на графике можно задать командой set/gra yaxis=... xaxis=...

  9. В качестве значений позиционного угла и наклона обычно принимают величины, получаемые для внешних областей галактики, т.к. во внутренних областях на форму изофот влияют балдж, спиральные рукава и часто бар. Используя выбранное значение позиционного угла, повернуть с помощью команды rebin/rotate изображения во всех диапазонах (в звездных величинах) так, чтобы большая полуось галактики была параллельна оси X.

    Построить фотометрические разрезы вдоль большой оси галактики в четырех фильтрах на графическом экране (команды set/gra, plot/row, overplot/row).

    С помощью команды plot/column (или overplot/column) построить фотометрический разрез вдоль малой оси в фильтре V и сравнить его на том же графике с разрезом вдоль большой оси в том же фильтре (команды set/gra, overplo/row). Распечатать график (с помощью set/gra, copy/gra).

  10. Создать с помощью comp/image файлы показателей цвета B- V, V-R, V-I, R-I галактики, вывести их на экран дисплея (команда loa/ima), построить и затем распечатать разрезы карт показателей цвета вдоль большой оси галактики (используя команды clear/display, set/gra, plot/row, overplot/row copy/gra и др.).

  11. Определить интегральную звездную величину и показатели цвета галактики. Для этого необходимо по изображениям в интенсивностях вычислить командой integrate/aperture с ключом CURSOR найти интегральные интенсивности с площадки, занимаемой галактикой. Площадку выбрать так, чтобы звезды поля в нее не попадали. Одна из звезд поля проецируется на бар. Ее интенсивность необходимо найти (с помощью команды magnitude/circle - так же, как определялись интенсивности звезд- стандартов Ландольта) и вычесть из светимости галактики светимость звезды. Эти операции необходимо проделать для изображений галактики в интенсивностях во всех четырех фильтрах.

    Пересчитать полученные данные потоки в звездные величины Рассчитать интегральные показатели цвета.

  12. Проделать аналогичные действия для определения показателей цвета ядра, бара, кольца, диска и спиральных ветвей галактики. Для бара, кольца и диска выбирать по несколько площадок и сложить затем значения потока (для получения среднего цвета). На карте изофот схематично нарисовать местоположения площадок, в которых были проведены измерения.

    Примечание: Размеры и положения площадок во всех фильтрах должны быть одинаковыми.

  13. Найти абсолютную звездную величину галактики в фильтре B по формуле $M_B = m_B + 5 - 5 lg D - A_B - A_{iB}   ,$

    где D - расстояние до галактики в пк, $A_B$ - Галактическая экстинкция, $A_{iB}$ - внутреннее поглощение в NGC 6217. Для NGC 6217: D=20.6 Мпк, $A_B$ = 0.15, $A_{iB}$ = 0.12.


Результаты


В качестве результатов представляются следующие данные:

1. Интегральная звездная величина и показатели цвета NGC 6217 m(B), B-V, V-R, V-I, R-I;

2. Абсолютная звездная величина M(B);

3. График изменения позиционного угла и наклона плоскости галактики с расстоянием до центра. Принятое в работе значение позиционного угла и наклона.

4. Разрезы изображения в фильтре V по большой и малой осям.

5. Карты изофот галактики в различных фильтрах и карты показателей цвета.

6. Средние показатели цвета m(B), B-V, V-R, V-I, R-I ядра, бара, кольца, диска и спиральных ветвей галактики. Указать, каким спектральным классам звезд они соответствуют.

Примечание: Переведен в формат postscript и распечатан должен быть только рисунок с разрезами вдоль осей. Остальные рисунки распечатываются только по договоренности с преподавателем и должны быть показаны на дисплее.

Приложения



Общие команды и возможности
Linux и X-windows


Если перед вами находится терминальное окно с приглашением вида

Welcome to Linux 2.2.28

Osiris login:

то введите логин и затем пароль [сообщается преподавателем]

В результате вы попадете в терминальное окно с приглашением. Загрузите X-windows, набрав

startx &

X-windows загружается в оптимальный графический режим. Однако, вам может понадобиться изменить текущее графическое разрешение. Это можно сделать, нажав Ctrl Alt Grey+ (или Ctrl Alt Grey-). Графические моды меняются по очереди, как правило их 3-5.

Примечание: Предыдущие шаги могут быть проделаны заранее преподавателем.

По окончании загрузки X-windows в левом нижнем углу появятся иконки с несколькими полезными программами.

Значок терминала - открытие дополнительного окна терминала.

Значок калькулятора - вызов калькулятора.

Значок привидения - вызов программы gv для просмотра postscript - файлов. По-другому, можно набрать в терминале gv имя_файла.ps & и вы также сможете просмотреть ps-файл.

Значок N - запуск Netscape.

В ходе работы вам может понадобится текстовый редактор. Один из простейших - joe. Наберите

joe имя_файла_существующего_или_нового


Кратко о командах joe:

Ctrl K H - help, подсказка.

Ctrl K D - спасти файл под именем (запрашивает) без выхода из него.

Ctrl K X - спасти файл и выйти из него.

Ctrl C - выход без спасения (на вопрос ответить Y)

Полезные команды для работе в терминальном окошке

Просмотр текущего каталога

ls

Просмотр текущего каталога со всеми скрытыми файлами и полной информацией

ls -la

Определение текущей директории

pwd

Копирование

cp старый_файл новый_файл

Удаление файла

rm ненужный_файл

Переименование

mv старый_файл новый_файл

Переход с другую директорию

cd имя_директории

Примечание: корень домашней директории для данного пользователя обозначается тильдой и переход в корень осуществляется командой cd /

Удаление директории

rmdir имя_директории

Печать постскрипт-изображения или простого текстового файла

lpr имя_файла

Выход из терминала

exit

Кроме того, обратите внимание на клавишу Tab. При неполном введении системной команды, или имени файла и т.п. при нажатии на Tab вы получите либо автоматически напечатанное полное слово, либо звуковой сигнал, означающий, что есть несколько вариантов. В этом случае при втором нажатии на Tab вы получите список вариантов. Это сильно упрощает введение длинных имен файлов и команд.

X-windows поддерживает копирование текста с помощью мышки. Выделите текст (например, длинное имя файла) с помощью левой клавишы мышки. При нажатии на среднюю клавишу текст скопируется в активное окно, где в данный момент мигает курсор. Чтобы сделать окно активным, просто наведите на него курсор мышки.

После окончания работы закройте все программы и окна терминалов, набрав в них exit. Затем одновременно нажмите Ctrl Alt Backspace X-windows закроется. В начальном терминале наберите exit для полного выхода из Linux.

Примечание: В некоторых случаях работа с MIDAS осуществляется на удаленном сервере. Тогда все команды, вводимые с терминала, будут действовать так же, как и на локальной машине. Иконки локального X-windows будут открывать соответствующие приложения на локальной машине. Вход на сервер предоставляется преподавателем.


Краткое описание MIDAS


Команды вводятся в терминале, где запущен MIDAS, заканчиваются нажатием клавиши Enter. Нажав Enter без команды вы получите список последних 15 введенных команд. Нажимая "стрелку вверх" на клавиатуре можно просмотреть более, чем 15 последних команд (как правило 100). Копирование с помощью мыши и "спеллинг" с помощью клавиши Tab также работают и в терминале MIDASa. Команды могут вводиться как в верхнем, так и в нижнем регистре. Это не имеет значения (в отличие от команд в терминале X-windows). Также вместо полной команды может использоваться сокращение в том случае, если MIDAS поймет его однозначно. Например, cl/ch o суть то же самое, что и CLEAR/CHANNEL OVER. Полную справку по любой команде MIDAS можно получить, набрав в нем help название_команды.

Формат изображений у MIDAS свой собственный, файлы с расширением bdf. Расширением plt обычно обозначаются таблицы в собственном формате MIDAS.

Запуск MIDAS.


inmidas -p 01 - Запуск MIDAS в параллельном режиме. Пройдет также и команда inmidas, по умолчанию запускающая сессию номер 00.

gomidas - запуск MIDAS с охранением настроек и предыдущих 15 команд от последней сессии.

helpmidas - интерактивная справочная система по командам MIDAS.



Команды MIDAS.



Литература


1. Landolt A.U. UBVRI Photometric Standard Stars in the Magnitude Range 11.5-16.0 Around the Celectial Equator. - Astron. J. 1992. Vol.104. No.1. P.340.

2. ESO-MIDAS. ESO Operating Manual. 1995. No.1. Vol.A-C.


Пересмотрено 09.11.2001

Figure 1: .
\begin{figure}\psfig{figure=land_357.ps,width=16cm}\end{figure}

Figure 2: .
\begin{figure}\psfig{figure=land_p62.ps,width=16cm}\end{figure}




next up previous
Next: About this document ...
Dmitriy Bizyaev 2001-09-15